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Straight Skeletons of Monotone Surfaces in Three-Space
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Abstract

We present a simple algorithm to compute the straight
skeleton and mitered offset surfaces of a polyhedral
terrain in 3D. Like its 2D pedant, the 3D straight
skeleton is the result of a wavefront propagation pro-
cess, which we simulate in order to construct the skele-
ton in time O(n4 log n), where n is the number of ver-
tices of the terrain. Any mitered offset surface can
then be obtained from the skeleton in time linear in
the combinatorial size of the skeleton.

1 Introduction

The straight skeleton was introduced to computa-
tional geometry over 20 years ago by Aichholzer et
al. [2]. Let P be a simple polygon in the plane and
consider the following process. At time t = 0, each
edge of P starts to move towards the interior of P
at unit speed in a self-parallel manner, maintaining
incidences. The set of moving edges forms a set of
polygons WP (t), called the wavefront of P at time t.
Note that each edge of WP (t) is at all times at or-
thogonal distance t to its corresponding edge of P .

The wavefront needs to be updated at times to re-
main a set of simple polygons: As edges shrink to zero
length (edge event), they are removed, and edges are
split and incidences updated when a previously non-
incident vertex moves into their interior (split event).
(If the polygon is not in general position then more
complex interactions are possible.) The straight skele-
ton S(P ) of P is then defined as the geometric graph
whose edges consist of the traces of wavefront vertices
over the propagation process, see Figure 1.

Figure 1: The straight skeleton S(P ) (blue) of an in-
put polygon P (bold) is the union of the traces of the
vertices of P as it shrinks. Several instances (wave-
fronts) of the shrinking polygon are shown in gray.
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A mitered offset of P at offsetting distance t cor-
responds to the wavefront at time t. Mitered offsets
are inherently linked to the straight skeleton: Given
the straight skeleton S(P ) of a polygon P with n ver-
tices, any mitered offset can be constructed in O(n)
time and space [11].

Variations of the straight skeleton problem in the
plane have also been investigated, by generalizing the
input to arbitrary planar straight line graphs or by
adding multiplicative or additive weights to input
edges [1, 7, 8, 10].

The algorithm with the currently best worst-case
complexity for computing the 2D straight skeleton of
an arbitrary simple polygon is due to Eppstein and
Erickson [8] and requires both O(n17/11+ε) time and
space, for an arbitrarily small but positive ε. Bet-
ter runtime bounds can be obtained when restricting
the input to monotone polygons. Indeed, Biedl et
al. [6] present a simple and easy-to-understand algo-
rithm which requires O(n log n) time and linear space
to compute the straight skeleton.

Moving to 3-space. Straight skeletons of polytopes
were studied by Barequet et al. [5], and recently by
Aurenhammer and Walzl [4]. However, while com-
binatorial complexities have been established for the
straight skeleton of polytopes, no runtime bounds
have been investigated.

In this work, we consider the straight skeleton and
mitered offsets of polyhedral terrains in 3-space. As
usual, a polyhedral terrain is a piecewise linear, con-
tinuous function of two variables. To simplify matters,
we assume that the terrain T is defined over all of R2

and that all facets are simply-connected. Further-
more, we assume T is in general position: No more
than four supporting planes of the facets of T shall
be tangent to a common sphere and the degree of any
vertex of T shall be at most a constant k.

2 Wavefront Propagation

We consider the wavefront propagation of a polyhe-
dral terrain T . Just as in the plane, where the 2D-
wavefront consists of edges at distance t to their cor-
responding input edge, here the wavefront consists of
wavefront facets which are at orthogonal distance t to
their corresponding input facets at all times.

Formally, let f be a facet of T , let H̄f be its sup-
porting plane, and let ~nf be the unit normal of f with
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positive z-coordinate. Then we define the offset sup-
porting plane at distance t to be Hf (t) := H̄f + t ·~nf .
The wavefront, just like the input T , is a continuous,
piecewise linear surface, i.e., a polyhedral terrain. Its
facets at time t are embedded in the offset supporting
planes Hf (t) of all facets f of T .

Initially, at time t = 0, the wavefrontWT (t) is iden-
tical to T . When the propagation process starts, all
facets of the wavefront move upwards, in positive z-
direction. During this propagation, incidences are re-
tained where possible.

For the initial offset at time t = δ, for a sufficiently
small δ > 0, retaining the combinatorial structure is
possible along edges. Furthermore, locally at vertices
of degree three, an offset of the same combinatorial
structure is possible. However, at vertices of degree
four or more, any offset, even at an infinitesimally
small δ, will generally have a combinatorial structure
different from the input: The offset surface consists
locally of several degree-three vertices that arise from
the offsets of the planes incident at the input vertex
of higher degree; see Aurenhammer and Walzl [4].

2.1 Events

As the wavefront propagation continues, the combi-
natorial structure of the surface has to be updated
and the set of wavefront vertices and their trajectories
change at discrete points in time at so-called events,
when four or more wavefront facets pass through a
common point.

Aurenhammer and Walzl [3] consider straight skele-
tons of polytopes, and they differentiate between
events that change the topology of the offset poly-
tope and events that merely change the surface of the
polytope. They call the first class solid events, which
includes splitting events, where the polytope discon-
nects and piercing events, where a vertex runs into
a facet. However, since our wavefront surface is z-
monotone and continuous, these events cannot occur
and we will only observe the second class of events,
surface events, in the wavefront propagation.

An edge event happens at time t when an edge of
the wavefront collapses to zero length without its in-
cident facets vanishing, too. The two vertices incident
at the edge are merged, giving rise to a high-degree
vertex. For the wavefront after the event, at time t+δ,
this high-degree vertex has to be resolved and gener-
ally split again similar to the process at the initial
wavefront construction. See Figure 2a.

A second type of event, the (facet) split event hap-
pens when a vertex v of the wavefront that is incident
at facet f moves into the interior of another edge e
of f without f collapsing. This case is similar to the
split event known from 2D straight skeletons. Com-
binatorially, the edge e is split at the locus of v and
made incident to v, creating a higher-degree vertex

which then needs to be resolved again for the post-
event wavefront. See Figure 2b.

In the third event type, the face event, a facet f may
collapse to an empty area. This coincides with one or
more edges of f collapsing or a vertex of f moving into
the interior of another edge of f . At the event time
t, the facet is replaced by a set of edges that cover
its boundary without overlapping, thereby merging
vertices which now occupy the same locus (if such
vertices exist). Again for the post-event wavefront,
higher-degree vertices may need to be resolved. See
Figure 2c.

(a) edge event

(b) split event

(c) face event

Figure 2: Edge event, split event, and face event dur-
ing the wavefront propagation.

If the input is not in general position, two vertices
that share a facet but not an edge can also meet. This
will result in a higher-degree vertex (usually of at least
degree six) that needs to be split again. We have ruled
out such cases by our general position assumption.

2.2 Computing the Straight Skeleton

Once no more events occur during the propagation
process, the process has finished. The three dimen-
sional straight skeleton S(T ) of T is then the struc-
ture whose edges are the traces of wavefront ver-
tices and whose facets are the traces of wavefront
edges. To unambiguously refer to features of the
3D straight skeleton, Aurenhammer et al. [4] call the
edges of S(T ) spokes and its facets sheets. The vol-
umes bounded by sheets are called cells.

Interior vertices correspond to events that have
been observed in the propagation process. Any wave-
front vertex or edge remaining in the wavefront at
the end of the process induces an unbounded straight
skeleton spoke or sheet which continues to infinity.
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3 Simulating the Wavefront Propagation

We compute the straight skeleton S(T ) of T by sim-
ulating its wavefront propagation. This requires de-
termining at every stage in the process what the next
event will be. To cope with this problem we maintain
a priority queue of potential events: As initialization,
we first create the initial wavefront for time t = δ,
where δ is infinitesimally small, splitting higher de-
gree vertices of T . Then we store for every edge of
the wavefront its collapse time, and we store for every
vertex of the wavefront the instances of when it will
move into any of the edges of its incident facets.

To advance time in our simulation of the wave-
front propagation, we fetch the event from the priority
queue with the earliest associated time. We process
this event by modifying the wavefront combinatorics
according to the event type, thereby merging and then
splitting vertices as required and as described in the
previous section. We add new events to the priority
queue for all edges and vertices that were affected or
created by the event.

Then, we proceed and fetch the next item from the
priority queue. We need to verify that it still is a valid
event, that is, we need to check that the edge that is
supposed to collapse or the vertex that is supposed
to move into an edge are still elements of the wave-
front — prior events may have already restructured
the wavefront and invalidated this event. If it is a
valid event then we process it as described. Other-
wise we simply drop it. In either case, this process is
repeated until the priority queue is empty.

Number of events. In general, an event happens at
point p and time t when four (or more) wavefront
facets become incident. (For simplicity reasons, our
general position assumption guarantees that no more
than four wavefront facets are involved in an event.)
This provides a natural upper bound of

(
n
4

)
on the size

of the priority queue, where n is the number of facets
of the input surface. Based on our experience with dif-
ferent algorithms for computing straight skeletons in
the plane, we conjecture that in practice only a small
subset of those

(
n
4

)
combinations will be relevant.

Splitting higher-degree vertices. Aurenhammer
and Walzl [3] note that an offset surface of a higher-
degree vertex v of a three dimensional polytope always
exists even though is not necessarily unique. One
offset that always exists corresponds to a wavefront
where v has been replaced by a tree. In [4], they
suggest as a simple approach to enumerate all combi-
natorially different trees and check whether they cor-
respond to valid offset surfaces of v. The geometry of
a tree’s element is dictated by its combinatoric prop-
erties. Such a valid tree will replace the vertex v in
the propagating wavefront.

By our general position assumption, all vertices
of the input surface have at most constant degree
k. Thus, finding this tree for a single vertex v is
a constant-time operation as well. Furthermore, at
most a constant number of elements need to be added
to the wavefront per input vertex.

Vertex degrees during events. After having con-
structed the initial wavefront, all moving vertices will
be of degree three in the generic case. We investigate
the types of vertices that can appear in events.

In an edge event, the edge that connects to degree-
three vertices collapses, giving rise to a degree-four
vertex v, as shown in Figure 2a. In the generic case,
v will have to be split (at constant cost) into two new
degree-three vertices connected by a new edge. In our
general position assumption we stated that no more
than four supporting planes of faces may be tangent
to a common sphere. Thus, for our input we will
always either split v into two, or v will never again
participate in an event.

In a split event, a degree-three vertex v comes to lie
on previously non-incident wavefront edge e, which is
split in two during the event, giving rise to a degree-
five vertex (Figure 2b). In the generic case this vertex
will be split into three new vertices, each of degree
three. Again, by our general position assumption, this
will be the case for our input sets.

For face events we can distinguish two sub-types
(Figure 3). In one, a triangle facet will collapse as all
its incident edges shrink to zero length. This will give
immediate rise to a new degree-three vertex which can
then propagate. The other type is where a more com-
plex polygon collapses as some of its edges collapse
and maybe some vertices become incident at other
edges of the polygon. The facet is replaced by one or
more edges, and all resulting vertices will be of de-
gree three and can propagate without any need to be
split. Note that multiple face collapses happening at
the same time may cause an edge that has the same
face on both sides. Such an edge is not removed; in-
stead it propagates like any other edge, similar to how
ghost vertices propagate in Biedl et al. [7]. This en-
sures that all faces remain simply connected during
the propagation.

Figure 3: Two types of face collapsing events.
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4 Obtaining Offset Surfaces

If only a single mitered offset surface at orthogonal
distance t is sought, then one approach to construct
this offset is to simply run the wavefront propagation
process until time t. Then, the wavefront at this time
is the offset surface required.

However, if multiple offset surfaces at different dis-
tances should be constructed or if the straight skeleton
is already available, then we apply the following pro-
cess to obtain an offset surface in time linear in the
size of the straight skeleton:

For a given spoke s, we denote by s(t) the three
dimensional point obtained by intersecting s with a
plane at distance t and parallel to the base of any one
of its incident cells. Equivalently, s(t) is the location
at time t of the wavefront vertex that traced out s.

For every spoke s of the skeleton which exists at
(orthogonal) offsetting distance t, i.e., for which s(t)
exists, and for every cell c incident at s where (s, c) has
not been processed before, we construct an offset facet
as follows: Let f1 be one of the sheets of s1 := s that is
on the boundary of c. We walk along the boundary of
f1, moving in the direction of positive z, until we reach
another spoke s2 of f1 that exists at distance t. Now
let f2 be the other sheet of c incident at s2 and repeat
the walk in f2 to find a spoke s3. Eventually, we will
return to our initial spoke s1. Let s` be the last one
before we returned. (Special handling will be required
to process the case of infinite elements.) The polygon
with vertices s1(t), s2(t), . . . , s`(t) is now a valid off-
set facet and we add it to the offset surface we are
constructing. We then mark (s1, c), (s2, c), . . . , (s`, c)
as processed and continue with our main loop. Once
all spokes have been processed, the set of offset facets
represents the complete offset surface. This algorithm
can be implemented such that all offset facets together
with their adjacency relations are obtained.

The correctness of this approach hinges on the
property that all offset facets are simple polygons and
contain no holes. This property stems from the fact
that the wavefront propagation does not experience
any piercing event since T is a terrain.

5 Discussion

We have presented a simple algorithm to compute the
straight skeleton of a z-monotone surface. The pro-
cessing cost of each event is constant for generic input,
and the number of events is bounded by

(
n
4

)
. We do

not expect this bound to be tight, though. Maintain-
ing the events in a priority queue results in a runtime
bound of O(n4 log n). Better upper bounds are cur-
rently under investigation. A construction by Held [9]
establishes an Ω(n2) lower bound on the combinato-
rial complexity of S(T ) for a terrain T . His construc-
tion can be adapted to yield the same bound for the

combinatorial complexity of one mitered offset.
For descriptive simplicity, our general-position as-

sumption bounds the maximum degree of a vertex
that may appear in the propagating wavefront by a
small constant. However, using larger constants does
not change the process significantly and only results
in more complex event handling requirements.

Furthermore, we can relax the bound on the max-
imum degree of vertices of the input surface. Re-
solving higher-degree vertices where the degrees are
not bound by a constant for the initial wavefront will
require more than constant work, but at least for
pointed vertices, where all incident faces are confined
to one half space, offsetting can be reduced to com-
puting weighted 2D straight skeletons [5] which are
well studied [7] and for which implementations ex-
ist [10, 11]. Vertices that are saddle-points can still
be handled by one of the methods described by Au-
renhammer and Walzl [4].
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